Highly Sensitive NO₂ Gas Sensors Based on Electrolytically Exfoliated Graphene/Au-catalyzed WO₃ Composite Films

Sathukarn Kabcum¹, Anurat Wisitsoraat², Chakrit Sriprachuabwong², Ditsayut Phokharatkul², Adisorn Tuantranont², Sukon Phanichphant³, Chaikarn Liewhiran^{1,*}

¹Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202, Thailand

²Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center,

National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand

³Materials Science Research Center, Faculty of Science, Chiang Mai University,

Chiang Mai 50202, Thailand

*Corresponding author: chaikarn_@yahoo.com

Abstract: The effect of functionalized additives of high-aspect-ratio WO₃ nanorods on nitrogen dioxide (NO₂) gas-sensing properties were systematically studied by doping with 0.25-2 wt% gold (Au) and additional loading with 0.1-10 wt% electrolytically exfoliated graphene (G). The WO₃ nanorods were synthesized by a modified precipitation method [1] utilizing ethylene glycol as a dispersing agent while Au-doped WO₃ nanoparticles and their graphene composites were also prepared by impregnation method to achieve high responsive NO₂ sensors. Characterizations by X-ray diffraction, transmission/scanning electron microscopy and X-ray photoelectron spectroscopy significantly demonstrated that Au-doped WO₃ nanostructures had nanorod-like morphology with polycrystalline monoclinic WO₃ phase and Au was confirmed to form solid solution with WO₃ lattice while graphene in the sensing film after annealing and testing still retained high-guality multilayer structure with low oxygen content. The sensing films were prepared by spin coating technique and evaluated for low detection of NO₂ (0.125-5 ppm) sensing performances at operating temperatures ranging from 25°C to 350°C in dry air. Gas-sensing measurement indicated that WO3 sensing film with optimal 5 wt% graphene exhibited the maximum response at 250°C, while 0.5 wt% Au-doped WO₃ optimally catalyzed the highest responses and shorter response time at 250°C. Particularly, the additional loading of optimal 0.5 wt% graphene into optimal 0.5 wt% Au-doped WO₃ composites led to a drastic response enhancement with very short response time and fast recovery stabilization at 350°C. Detailed mechanisms for the drastic NO₂ response enhancement by catalyzed-Au and graphene were proposed based on the formation of graphene/catalyzed Au-doped WO₃ ohmic metal-semiconductor junctions and accessible interfaces of graphene-metal oxide nanostructures. Therefore, the G-Au/WO₃ composite has a potential for responsive low detections of NO₂ and may be useful for environmental applications.

Reference

[1] S. Kabcum, D. Channei, A. Tuantranont, A. Wisitsoraat, C. Liewhiran, S. Phanichphant, Sens. Actuators, B, **226** (2016) 76–89.

Figures

RESULTS: HR-TEM images of (a) 0.5 wt%Au/WO₃ nanorods and (b) graphene (G), change in resistance under exposure to NO₂ (0.125–5 ppm) of (c) WO₃ and 0.25–2 wt%Au/WO₃ at 250°C, (d) 0.1–10 wt%G-loaded WO₃ sensors at 250°C, and (e) 0.1–10 wt%G/0.5 wt%Au/WO₃ sensors at 350°C.